

Simposio: Deficit di GH dalla transizione all'età adulta

Terapia sostitutiva: a chi?

Ernesto De Menis

Dipartimento Medicina

U.O Medicina - Montebelluna

Disclosures Ipsen, Novartis, Pfizer, Otsuka

GHD ADULTO

Quadro clinico ben definito caratterizzato da alterazioni composizione corporea

- massa magra → forza muscolare
- massa ossea → resistenza osso
- massa adiposa → parametri rischio cardiovascolare profilo rischio cardiovascolare
- lipidi/insulino-resistenza/markers infiammatori
- alterazioni morfo-funzionali cardiache e vascolari qualità di vita aumento mortalità ?

DISTINZIONE - AOGHD (adult onset) - COGHD (childhood onset)

Distinzione fra i due gruppi di GHD adulto: dovuti a interruzione del GH durante la transizione ?

GHD CONFERMATO: PERCHE' TRATTARE

MUSCOLO (LBM)

COGHD vs. AOGHD

TABLE 2. Actual and height-norm	alized values for body com	position assessed by DE	XA	
	CO^a			AO
	Females (p = 20)	Males(n = 60)	Females (n = 10)	

	CO	CO^a		
	Females (n = 20)	Males (n = 60)	Females (n = 10)	Males (n = 15)
LBM (kg)				
Actual	32.0 ± 5.3	42.6 ± 8.4	42.6 ± 8.4	56.7 ± 12.0
Height-normalized	34.7 ± 5.0	42.2 ± 7.4	44.5 ± 8.3	55.2 ± 10.7
FM (kg)				
Actual	22.9 ± 8.6	19.6 ± 11.0	33.5 ± 9.4	25.9 ± 9.8
Height-normalized	25.0 ± 9.2	19.5 ± 10.9	35.0 ± 9.6	25.2 ± 9.5
BMC (kg)				
Actual	1.84 ± 0.41	2.25 ± 0.49	2.24 ± 0.37	2.79 ± 0.54
Height-normalized	1.99 ± 0.39	2.23 ± 0.43	2.34 ± 0.35	2.75 ± 0.50

^a P < 0.001 for CO vs. AO within gender.</p>

Attanasio JCEM 2002

COGHD TREATED vs. UNTREATED TABLE 2. LBM and FM: baseline values and 0-1 yr and 0-2 yr changes with no treatment or GH treatment at an adult dose or pediatric dose

	Control (n = 28)	Adult dose, $12.5 \mu g/kg d$ (n = 51)	Pediatric dose, $25.0 \mu g/kg d$ (n = 51)	P value a	P value ^b
LBM (kg)					
Baseline	41.1 ± 7.6	39.6 ± 9.6	39.3 ± 10.1	0.300	
Change 0-1 yr (kg)	0.3 ± 2.5	4.2 ± 3.2	4.0 ± 3.3	< 0.001	0.856
P value	0.571	< 0.001	< 0.001		
Change 0-2 yr (kg)	1.0 ± 3.0	5.1 ± 3.9	5.2 ± 4.4	< 0.001	0.447
Change 0-2 yr (%)	2.4 ± 2.0	12.7 ± 9.4	14.2 ± 11.7	< 0.001	0.970
P value ^c	0.091	< 0.001	< 0.001		
FM (kg)					
Baseline	20.5 ± 9.5	22.4 ± 12.5	20.4 ± 9.6	0.792	
Change 0-1 yr	0.8 ± 3.1	-2.2 ± 5.0	-2.7 ± 5.1	0.003	0.455
P value ^c	0.150	0.003	< 0.001		
Change 0-2 yr (kg)	1.5 ± 5.3	-1.6 ± 5.8	-1.1 ± 4.0	0.029	0.779
Change 0-2 yr (%)	12.9 ± 11.4	-7.1 ± 22.8	-6.0 ± 26.6	0.006	0.950
$P \text{ value}^c$	0.150	0.070	0.073		

Attanasio JCEM 2004

GHD CONFERMATO: PERCHE' TRATTARE

OSSO

COGHD

vs. AOGHD

TABLE 2. Actual and height-normalized values for body composition assessed by DEXA

	CO^a		AC)
	Females (n = 20)	Males (n = 60)	Females (n = 10)	Males (n = 15)
LBM (kg)				
Actual	32.0 ± 5.3	42.6 ± 8.4	42.6 ± 8.4	56.7 ± 12.0
Height-normalized	34.7 ± 5.0	42.2 ± 7.4	44.5 ± 8.3	55.2 ± 10.7
FM (kg)				
Actual	22.9 ± 8.6	19.6 ± 11.0	33.5 ± 9.4	25.9 ± 9.8
Height-normalized	25.0 ± 9.2	19.5 ± 10.9	35.0 ± 9.6	25.2 ± 9.5
BMC (kg)				
Actual	1.84 ± 0.41	2.25 ± 0.49	2.24 ± 0.37	2.79 ± 0.54
Height-normalized	1.99 ± 0.39	2.23 ± 0.43	2.34 ± 0.35	2.75 ± 0.50

^a P < 0.001 for CO vs. AO within gender.</p>

Attanasio JCEM 2002

COGHD TREATED

VS.

UNTREATED

TABLE 3. Changes from baseline in bone mineral content (BMC) and density (BMD) after 2 yr of no GH treatment (control) or GH treatment at an adult (12.5 μ g/kg·d) or a pediatric (25 μ g/kg·d) dose, and ANCOVA of the three groups using baseline height as a covariate

		Control (n = 32)	Adult dose $(n = 58)$	Pediatric dose (n = 59)	ANCOVA P value
7	Total BMC				
	Baseline (g)	2267 ± 420	2109 ± 414	2129 ± 440	0.179
	Change 0-2 yr (g)	108.1 ± 151.2	197.8 ± 179.3	162.7 ± 146.6	0.010
	Percentage change (%)	5.6 ± 8.3	9.5 ± 8.4	8.1 ± 7.6	0.008
	Within-group P value	< 0.001	< 0.001	< 0.001	
7	Total BMD				
	Baseline (g/cm ²)	1.09 ± 0.12	1.06 ± 0.10	1.06 ± 0.11	0.202
	Change 0-2 yr (g/cm ²)	0.029 ± 0.058	0.049 ± 0.049	0.032 ± 0.046	0.016
	Percentage change	2.9 ± 5.8	4.7 ± 4.5	3.2 ± 4.5	0.019
	Within-group P value	0.003	< 0.001	< 0.001	

Shalet JCEM 2003

GHD CONFERMATO: PERCHE' TRATTARE

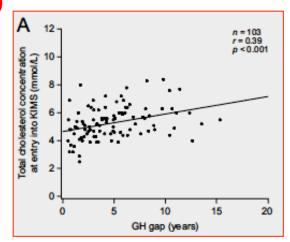
TESSUTO ADIPOSO (FM)

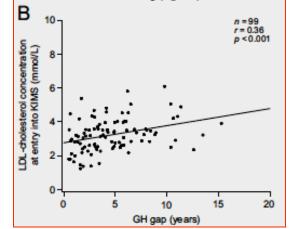
CoGHD TREATED vs. UNTREATED

	Control (n = 28)	Adult dose, $12.5 \mu g/kg d$ (n = 51)	Pediatric dose, $25.0 \mu g/kg d$ (n = 51)	P value a	P value ^b
LBM (kg)					
Baseline	41.1 ± 7.6	39.6 ± 9.6	39.3 ± 10.1	0.300	
Change 0-1 yr (kg)	0.3 ± 2.5	4.2 ± 3.2	4.0 ± 3.3	< 0.001	0.856
P value c	0.571	< 0.001	< 0.001		
Change 0-2 yr (kg)	1.0 ± 3.0	5.1 ± 3.9	5.2 ± 4.4	< 0.001	0.447
Change 0-2 yr (%)	2.4 ± 2.0	12.7 ± 9.4	14.2 ± 11.7	< 0.001	0.970
P value c	0.091	< 0.001	< 0.001		
FM (kg)					
Baseline	20.5 ± 9.5	22.4 ± 12.5	20.4 ± 9.6	0.792	
Change 0-1 yr	0.8 ± 3.1	-2.2 ± 5.0	-2.7 ± 5.1	0.003	0.455
P value c	0.150	0.003	< 0.001		
Change 0-2 yr (kg)	1.5 ± 5.3	-1.6 ± 5.8	-1.1 ± 4.0	0.029	0.779
Change 0-2 yr (%)	12.9 ± 11.4	-7.1 ± 22.8	-6.0 ± 26.6	0.006	0.950
P value ^c	0.150	0.070	0.073		

Attanasio JCEM 2004

ASSETTO LIPIDICO


Col Tot./LDL/HDL


Effetto della sospensione:

Pz. sospensione < 2 aa

vs. sospensione > 2 aa

Effetto della terapia: COGHD treated vs. untreated

Koltowwska JCEM 2010

LINEE GUIDA SU TRANSIZIONE

ESPE 2005

European Journal of Endocrinology (2005) 152 165-170

ISSN 0804-4643

CONSENSUS STATEMENT

Consensus statement on the management of the GH-treated adolescent in the transition to adult care

P E Clayton, R C Cuneo¹, A Juul², J P Monson³, S M Shalet⁴ and M Tauber⁵

AACE 2010

AACE Guidelines

AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS
MEDICAL GUIDELINES FOR CLINICAL PRACTICE FOR
GROWTH HORMONE USE IN GROWTH HORMONE-DEFICIENT
ADULTS AND TRANSITION PATIENTS – 2009 UPDATE:
EXECUTIVE SUMMARY OF RECOMMENDATIONS

Complete guidelines are available at www.aace.com

David M. Cook, MD, FACE;

Clinical Practice Guideline

ES 2011

Evaluation and Treatment of Adult Growth Hormone Deficiency: An Endocrine Society Clinical Practice Guideline

Mark E. Molitch, David R. Clemmons, Saul Malozowski, George R. Merriam,

PES 2016

Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency

Adda Grimberg^{a, b} Sara A. DiVall^{c, d} Constantin Polychronakos^e David B. Allen^{f, g}

TRANSITION PHASE

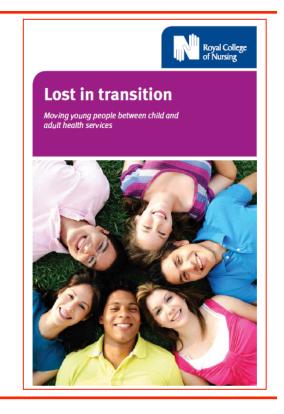
CLINICA PEDIATRICA → ADULTO

Più Centri (7)

Centri Regionali

Centri Extra-regionali

Aspetti psicologici


- senso di abbandono
- autonomia
- aspetti di sessualità e prospettive di fertilità

Aspetti sociali

indipendenza (scuola, lavoro)

Aspetti medici

indicazione a continuare

Storia dettagliata → Visita iniziale → Presa in carico

Nota AIFA 39

Età di transizione:

Al raggiungimento della statura definitiva la terapia con GH <u>può essere proseguita</u> senza ulteriori rivalutazioni nelle seguenti <u>patologie</u>:

- deficit di GH causato da mutazione genetica documentata
- panipopituitarismo congenito o acquisito organico, inclusa la sindrome di PW. Al raggiungimento della statura definitiva la terapia con rGH <u>negli altri soggetti</u> con deficit di GH <u>può essere proseguita solo se presentano dopo almeno un mese dalla</u> sospensione del trattamento sostitutivo con rGH:

risposta di GH <6 μg/L dopo ipoglicemia insulinica (ITT); oppure

risposta di GH <19 $\mu g/L$ dopo test farmacologico con GHRH + arginina.

Al raggiungimento della statura definitiva la terapia con rGH nei soggetti con sindrome di Prader Willi può essere proseguita se presentano: a) tre deficit ipofisari associati; b) risposta di GH dopo test farmacologico con GHRH + arginina <4.1 µg/L dopo almeno un mese dalla sospensione del trattamento sostitutivo con rGH.

DEFICIT DI GH TRANSIZIONE/ADULTO

Congenital

Genetic

Transcription factor defects (PIT-1, PROP-1, LHX3/4, HESX-1, PITX-2)

GHRH receptor gene defects

GH secretagogue receptor gene defects

GH gene defects

GH receptor/post receptor defects

Prader-Willi syndrome

Associated with brain structural defects

Agenesis of corpus callosum

Septo-optic dysplasia

Empty sella syndrome

Holoprosencephaly

Encephalocele

Hydrocephalus Arachnoid cyst

Associated with midline facial defects

Single central incisor

Cleft lip/palate

Acquired

Trauma

Perinatal

Postnatal

Central nervous system infection

Tumors of hypothalamus or pituitary

Pituitary adenoma

Craniopharyngioma

Rathke's cleft cyst

Glioma/astrocytoma

Germinoma

Metastatic

Other

Infiltrative/granulomatous disease

Langerhans cell histiocytosis

Sarcoidosis

Tuberculosis

Hypophysitis

Other

Cranial irradiation

Surgery Idiopathic

BENEFICI - RISCHI

CONTROINDICAZIONI ASSOLUTE

- 1) RETINOPATIA DIABETICA PROLIFERATIVA
- 2) NEOPLASIA MALIGNA ATTIVA O PREGRESSA NEOPLASIA MALIGNA (AACE)

0013-7227/02/\$15.00/0 Printed in U.S.A. The Journal of Clinical Endocrinology & Metabolism 87(12):5351-5352

Copyright © 2002 by The Endocrine Society

doi: 10.1210/sc.2002-021467

Special Editorial: Growth Hormone Treatment and Neoplasia—Coincidence or Consequence?

LWPES JCEM 2002

Genetic causes of cancer predisposition in children and adolescents

Federica Saletta¹, Luciano Dalla Pozza², Jennifer A. Byrne^{1,3}

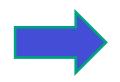
¹Children's Cancer Research Unit, Kids Research Institute, ²Oncology Department, ³The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, NSW, Australia

Transl Pediat 2015

DEFICIT DI GH TRANSIZIONE/ADULTO: RISCHIO ONCOLOGICO

Position Statement	D B Allen and others	GH safety workshop report	174:2	P1-P9				
Open Access								
GH safety workshop position paper: a critical								
appraisal of recombinant human GH therapy								
in children and adults								

ESPE; GRS; PES - Eur J Endocrinol 2016


- pz. con GHD non legato a neoplasia o suo trattamento
- pz. con neoplasia ipotalamo-ipofisaria (craniofaringiomi/adenomi ipofisari)
- pz. con GHD legato a trattamento di pregressa neoplasia maligna (CT/RT)

RECIDIVA/ACCRESCIMENTO
DI NEOPLASIA IPOTALAMO-IPOFISARIA

RMN PERIODICHE timing?

NEOPLASIE IN GENERALE

SCREENING ONCOLOGICO STANDARD

SAFETY: CRANIOFARINGIOMA

PEDIATRIC

No effect on relapse and progression

National Cooperative Growth Study (NCGS) (Maneatis J Ped End Metab 2000)

KIGS 1038 cranioph. (Darendeliler Acta Ped 2006)

KRANIOPHARYNGEOM (Muller Horm Res Paediatr 2010)

No randomization of rhGH (rhGH 47% of which 47% in PTR)

NCGS (Smith J Neur Sur Pediat 2016)

PEDIATRIC/ADULTS

No effect on relapse and progression

Karavitaki 32 treated vs. 53 untreated (Clin End 2006)

Olsson 56 treated vs. 70 untreated (EJE 2012)

Selection bias

NO comparable control group

rhGH treatment based on clinical judgment

SAFETY

PRECAUZIONI

Metabolismo glucidico

Fattori di rischio

- (Eziologia GHD)

- Familiarità

Peso Corporeo

Risk of Diabetes Treated in Early Adulthood After Growth Hormone Treatment of Short Stature in Childhood

Amélie Poidvin, 1,2,3,4 Alain Weill, 5 Emmanuel Ecosse, 4 Joel Coste, 4 and Jean-Claude Carel 1,2,3

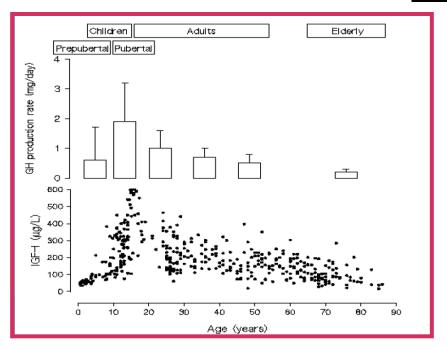
SAGhE-France JCEM 2017

Incidence of Diabetes Mellitus and Evolution of Glucose Parameters in Growth Hormone-Deficient Subjects During Growth Hormone Replacement Therapy

A long-term observational study

KIMS: Luger Diab Care 2011

Prevalence and Incidence of Diabetes Mellitus in Adult Patients on Growth Hormone Replacement for Growth Hormone Deficiency: a Surveillance Database Analysis


Hypoccs: Attanasio JCEM 2011

DIABETE MELLITO → glicemia, emoglobina glicosilata ogni 6 mesi

Secrezione di GH e livelli di IGF-I sono età-dipendenti

Transition age: il momento per riesaminare la dose

Dose pediatrica: mg/kg/die (70 kg x 0.025 = 1.75 mg/die)

Adulto: mg/die (pregresse dosi mg/kg/die → sovradosaggio)

DOSE TRANSITION

Metà della dose pediatrica

Dose iniziale standard (0.8-1 mg/die)

Dose iniziale bassa (0.2-0.5) e uptitrated

nr. 6 - marzo 2015

GLI STRUMENTI PER LA SOMMINISTRAZIONE DI GH NEL GHD

Responsabile Editoriale Vincenzo Toscano

DOSE INIZIALE

Severità del GHD (IGF-I off terapia)

Età di ripresa del rhGH

Sesso: dose maggiore nelle donne (+0.1- 0.2 mg)

Peso

Terapie concomitanti sostitutive:

- estrogeni (orale: dose +30%)
- tiroide
- surrene

Sensibilità individuale? Exon 3 deleted (d3-GHR) vs fl-GHR

MONITORAGGIO ADULT/TRANSITION

IGF-I

Metà superiore dell'intervallo di normalità

UPTITRATION

IGF-I: a 1-2 mesi

IGF-I stabilizzata

- ogni 6 mesi (valutazione anche compliance)
- annuale

CLINICA

Effetti collaterali

Short term: raramente osservati

- Ritenzione idrica
- Artralgie/Mialgie
- Tunnel carpale
- Cefalea
- Sleep Apnea

Efficacia clinica

VALUTAZIONE CLINICA

VALUTAZIONE CLINICA

 $6 \rightarrow 12$ mesi

Altezza, peso corporeo

BMI, circonferenza vita

FC, PAO

Quality of Life

www.associazionemediciendocrinologi.it

ame news

nr. 8 - febbraio 2015

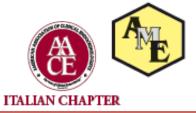
LA TERAPIA CRONICA CON GH NEGLI ADULTI CON GHD SULLA QUALITÀ DELLA VITA

Responsabile Editoriale Vincenzo Toscano

Nei pazienti adulti con deficit di GH (GHD) la qualità della vita (QoL) è ridotta per motivi fisici (facile affaticabilità, deficit di concentrazione e memoria), psicologici (ansia, risposta inadeguata agli eventi stressanti) e sociali (isolamento). In questi pazienti l'alterazione della QoL costituisce un motivo aggiuntivo per il trattamento sostitutivo con GH ricombinante umano (mGH) (1).

In questi pazienti, tuttavia, la valutazione della QoL è complessa e richiede questionari specifici. Ne sono stati studiati e validati due da parte dei gruppi che hanno compiuto studi osservazionali in questo settore: QoL-AGHDA (QoL-Assessment of GH Deficiency in Adults, studio osservazionale KIMS) e QLS-H (Questions on Life Satisfaction-Hypopituitarism, studio osservazionale HypoCCS).

Le prime osservazioni su questo argomento avevano ben documentato che il trattamento sostitutivo con rhGH migliorava la qualità di vita, ma gli studi compiuti erano di durata limitata (1-3 anni). Lo studio KIMS (2), che aveva analizzato solo pazienti europei, aveva confermato il miglioramento della QoL nei pazienti GHD, molto marcato durante il primo anno di terapia e mantenuto anche negli anni successivi fino alla quasi-normalizzazione al termine del follow-up.


Di recente sono comparsi i risultati sulla QoL di un trattamento più prolungato. Il lavoro dello studio HypoCCS (3) ha analizzato una popolazione di adulti sia Europei che Statunitensi, con GHD insorto sia in età adulta (AO-GHD, n = 1436) che pediatrica (CO-GHD, n = 96), con follow-up fino a 10 anni di terapia sostitutiva, mirando a identificare fattori predittivi di risposta sulla QoL. Questi risultati hanno confermato la riduzione globale della QoL nei GHD prima del trattamento, che era maggiore in alcuni sottogruppi, come gli statunitensi, quelli con AO-GHD e quelli con maggior BMI. Il trattamento sostitutivo ha migliorato la QoL: durante il primo anno di terapia si è osservato il maggior incremento, come nel KIMS, miglioramento che viene mantenuto negli anni successivi in maniera continuativa, per cui dopo 10 anni si è osservata la quasi-normalizzazione dei valori rispetto alla popolazione generale paragonata per nazione, età e sesso. L'età, il sesso, la presenza di deficit endocrini multipli, la pregressa radioterapia sulla regione ipofisaria e i valori di IGF-I pre-trattamento non hanno influenzato la risposta. Il miglioramento maggiore della QoL si è osservato nei pazienti europei, in quelli con valori pre-trattamento più bassi di QoL, minor BMI, senza depressione e senza alterazioni visive. In conclusione, la QoL rappresenta un parametro importante nella decisione di intraprendere e continuare la terapia sostitutiva del GHD con rhGH. È necessario quantificare la compromissione di questo parametro utilizzando scale di valutazione specifiche. Sebbene gli studi osservazionali presentino limiti metodologici, incluso il bias di selezione, lo studio HypoCCS conferma che il trattamento del GHD nell'adulto ha effetti positivi sulla QoL, sia nel breve che nel lungo termine, e identifica sottogruppi di pazienti in cui la risposta

risulta maggiore. Bibliografia

- Molitch ME, et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab <u>2011</u>, 96: <u>1587-609</u>.
- Kołtowska-Haggstrom M, et al. Does long-term GH replacement therapy in hypopituitary adults with GH
 deficiency normalise quality of life? Eur J Endocrinol 2006, 133: 109-19.
- Mo D, et al. Ten-year change in quality of life in adults on growth hormone (GH) replacement for GH
 deficiency: an analysis of the hypopituitary control and complications study (HypoCCS). J Clin Endocrinol
 Metab 2014, 99: 4381-8.
- 4. Aimaretti GL. Deficit di GH nell'adulto. Endowiki.

VALUTAZIONE CLINICA

CONTROLLO BIOCHIMICO

 $(6 \rightarrow 12 \text{ mesi})$

(cortisolo, FT4)

IGF-I, lipidi, glicemia, HbA_{1c}

OGTT: soggetti a rischio

DENSITOMETRIA OSSEA

(baseline e dopo ogni 2-5 anni)

ECOCARDIOGRAFIA/DOPPLER

Quando indicati

(raccomandazioni per adulto)